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Abstract

This technical report presents an efficient implementation of the com-
monly used hash algorithm SHA-1. The SHA-1 algorithm is widely used
in various public-key cryptography algorithms, and therefore effidiand-
ware implementation of SHA-1 is of great importance. A thorough pre-
sentation of the implementation techniques is presented. The design was
implemented on a Xilinx Virtex-1I XC2V2000-6 FPGA device, and it re-
quired 1275 slices, operated at a clock frequency of 117.6 MHz achiev
ing a throughput of 734 Mbps, respectively. The design is compared to a
published design of MD5 hash algorithm and their performance and logic
requirements are compared. The SHA-1 design is also compared to other
open-literature FPGA-based SHA-1 implementations, and it is concluded
that it is among the fastest and smallest SHA-1 FPGA implementations.
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1 Introduction

This report describes an efficient hardware implementatiothe SHA-1 hash
algorithm [7] which is a commonly used algorithm in cryptaghy. The imple-
mentation was designed using similar methods that wereingbd implementa-
tion of the MD5 hash algorithm [12] which is to be published9h The design is
called SIG-SHA-1, where SIG is an acronym for the Signal Bssimg Laboratory
at Helsinki University of Technology. SIG-SHA-1 is made irder to compare
hardware implementations of SHA-1 and MD5. The design wasl ad¢so in the
evaluation of a combined MD5/SHA-1 module described in B[G-SHA-1 is a
straightforward implementation of the SHA-1 specificai@vailable in [7], and
it performs well in both required area and performance.

Field Programmable Gate Arrays (FPGAS) are almost idealidates for im-
plementation platforms of cryptographic algorithms, hesathey combine the
speed of hardware with the flexibility of software. Severahéfits of crypto-
graphic algorithms on FPGAs are listed and analyzed in [16].

In the implementation described in this report, FPGA devicenufactured
by Xilinx are used. Xilinx Virtex-Il XC2V2000-6 FPGA devicesiused as an
implementation platform for the presented design. Vitiedevice family offers
both fast performance and large logic resources [17].

Hash algorithms, also commonly called as message digexithlys, are al-
gorithms generating a unique fixed-length bit vector for diteary-length mes-
sageM . The bit vector is called the hash of the message and it isdeeted as
. The hash can be considered as a fingerprint of the message.

There are several essential features that a hash algoritisnhave. FirstH
must be easy to compute for every giv@h Second, it must be hard to compute
M when# is given. Third, it must be hard to find another messaffevhich has
the same/H asM . [13] Here, the term 'hard’ means computationally infeesib

Secure Hash Algorithm (SHA) is described in the Nationatitate of Stan-
dards and Technology’s (NIST) Federal Information ProogsStandard (FIPS)
180-2: Secure Hash Standard (SHS) [7]. SHS describes toeving algorithms:
SHA-1 (SHA-160), SHA-256, SHA-385 and SHA-512, where thenber is the
length of the hastk¥ in bits. In this report, only SHA-1 (SHA-160) is consid-
ered. SHA-1 is widely used in various public-key cryptodmapalgorithms, e.g.
in Digital Signature Algorithm (DSA) [6].

This report is organized as follows: first, the SHA-1 aldamitis introduced
in Section 2. Design and implementation of the SHA-1 modsileansidered in
Section 3 and the results of the implementation are predeémt8ection 4. Short
comparisons to both MD5 and other published SHA-1 impleatgnts is given
in Section 5. Finally, conclusions are made in Section 6.
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SHA-1 is a part of the FIPS 180-2: Secure Hash Standard [7$. Véry widely
used in public-key cryptography, especially in messagkeatication schemes.

SHA-1 calculates a 160-bit/ for a b-bit 4. The algorithm consists of the
following steps:

1. Appending Padding Bits
Theb-bit M is padded in the following manner: a single 1-bit is added int
the end ofM, after which 0-bits are added until the length of the message
is congruent to 448, modulo 512.

2. Appending Length
A 64-bit representation db is appended to the result of the above step.
Thus, the resulted message is a multiple of 512 bits.

3. Buffer Initialization
Let Hp, H1, Ho, H3 andH4 be 32-bit hash value registers. These registers
are used in the derivation of a 160-bit hagh At the beginning, they are
initialized as follows:

Ho = x"6745230%

Hi = x'efcdal89’
H, = x"98badcféd (1)
Hz = x"10325476

Hs = x"c3d2elf0’

4. Processing of the message (the algorithm)
The algorithm which is used for processing of the padded ayess de-
scribed next. First, the padded message needs to be dinte&12-bit
blocks, denoted here &8; wherej > 0 is the index of the block. The al-
gorithm processes orid; at once, starting fronvlg, until all M; have been
processed.

Five 32-bit registersA, B, C, D andE are defined. At the beginning of
processing of eachl; their values are set as followA:«— Hg, B < Hy, etc.

The algorithm consists of 80 steps. ltetlenote the index of a step, i.e.
0 <t < 79. First, a 32-bit message blo¢k is derived for every stepfrom
the 512-bit message blod®; using a message schedule. Fer 16, W is
simply thetth 32-bit word ofM;. Whent > 16, W are derived recursively
with the following formula:

W=W_-36W_-gBW_14dW_15) < 1 (2)
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where<« denotes circular shift to the left bg/bits and® is a logical xor-
operation. LeK; be a constant value for stépThe values oK are set as

follows:
x"5a827999 0<t<19

x"6ed9ebal” 20<t <39 (3)
x"8f1lbbcdd 40<t <59
x"ca62c1d6” 50<t <79

Ki =

A function F(X,Y, Z) depending on the steps defined as follows

(XAY) ® (=XAZ) 0<t<19

) XeYaZ 20<t <39
FIX.Y.2) = (XAY) @ (XAZ)® (YAZ) 40<t<59 ()

XeYaZ 60<t <79

whereA, @ and- are bitwise logical and, xor and complement, respectively.

The message is processed for 0 < 79 with the following function, which
is here called the SHA-1 step function:

T=(A«5+F(B,C,D)+W+K+E ()

where+ denotes an addition moduld2 After each step, the values of the
registers are set as follows:

—T
—A
«— B« 30 (6)
«—C
—D

mooOm>

Finally, when all 80 steps have been processed, the follpaperations are
performed:
Ho <« Ho+A
H «—H;+B
Hy «—H+C (7)
H3 <« H3+D
Hi «—Hs+E

If all M; have been processed, the algorithm is terminated. Otheriie
algorithm is processed withj ; ;.

5. Output
When allM; have been processed with the above algorithm, the 160-bit
hash# of M is available inHg, H1, Hy, H3 andHa.
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Figure 1: A top-level block diagram of SIG-SHA-1

3 Implementation

The goal of the design of SIG-SHA-1 was to make an implemamatompara-
ble to the SIG-MD5-1 design presented in [9] so that the logiguirements and
performance of MD5 and SHA-1 could be easily compared. Tératitve struc-
ture was chosen in order to make a compact structure whidd bewsed in the
evaluation of the combined MD5/SHA-1 block introduced ih [8

The top-level architecture used for SIG-SHA-1 implemeatais almost sim-
ilar to the architecture used for SIG-MD5 implementatiom$d]. A block dia-
gram of SIG-SHA-1 is presented in Figure 1. SIG-SHA-1 impdes only the
steps 3-5 presented in Section 2, because paddifid &f fast to perform also
with software, and thus it does not require hardware acatber.

The critical path of the implementation includes the stepcfion block and
the multiplexer in front of it. Thus, an efficient implemetita of the step func-
tion is essential for a high performance hardware impleatent of SHA-1. The
calculation of the algorithm can be speeded up by unrollewgral steps as per-
formed in [2], for example. However, it was decided that egiproach was not
used in the SIG-SHA-1 implementation, because of the iseréaarea require-
ments and, especially, because of the reduced compayabilihe combined ar-
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Figure 2: A block diagram of the step function

chitecture of [8] and SIG-MD5-I.

A block diagram of the step function block is presented inuFég2 wherer
implements the functions of Equation (4) anid the index of the function derived
from the step. The logic requirements of the step function are the follayyi
four 32-bit adders, 5 32-bit registers aRdequires four 32-bit bitwise logical
operations selected by a multiplexer. Cyclical left shifgscbnstant values 5 and
30 do not require any logic, as they are performed simply byganizing the bit
vector.

The constant block in Figure 1 contains the values of cohgtanit may be
implemented using dedicated memory blocks of the FPGA dewa. Block-
RAMs in Xilinx’ devices. However, in SIG-SHA-1 it was implemiad on slices
in order to guarantee straightforward comparison to SIGEMD

The message schedule block implements the SHA-1 messagduseide-
scribed in Section 2. A 512-bit message blddk is loaded into the block with
M_in, address andload signals. The width ofi_in can be chosen between 32
and 512 bits, and for the implementations presented in ggert the width was
chosen to be 128 bits. The message schedule block includés32-bit shift
register and additional logic implementing Equation (2).

The five adders in Figure 1 are used for calculating the amditof Equa-
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tion (7). The counter is a 7-bit counter, which counts theigaift from 0 to 79.
The coder derives the indexf the functions of Equation (4) from i.e.

0 if0<t<19
1 if20<t<39 (8)
2 if40<t<59
3 ife0<t<79

The ready block determines when the calculation of the siepmished, i.e.

t =79=100111%. The leftmost multiplexer in Figure 1 is used for initializ-
ing the hash value registers. The initial values are set vah@grivation of a new
hash value is started wititart_new, i.e. whenMg is processed. If > 1 in
Mj, the values from previous algorithm round are used, and ¢nation is be-
gan with thecontinue signal. The other multiplexer is used for controlling the
iterative loop. For the first step,= 0, the initial values or the values from the
previous algorithm round are takes#itbrt_new oOr continue), otherwise values
from previous iteration step are used.

When theready signal is high, a processing bf; is finished, and/;, ; can be
loaded into the design. If al; have been processed, the h&slof the message
M is ready inhash.

The above architecture was written in VHDL and it require@ b8es of code.
Having the experience of implementing MD5, the design of SH#as simple
and straightforward.

4 Results

The architecture presented in Section 3 was implemented Xifinx Virtex-Il
XC2V2000-6 FPGA device. The logic synthesis was performetth 8iynplify
7.3.4 and implementation, including translation, mapppigce & route and tim-
ing, was performed with Xilinx ISE 6.2. Aldec Active-HDL 6®as used for
project management and simulations.

Virtex-1I XC2V2000-6 includes logic resources of 10,7526k. A Virtex-Il
slice consists of two 4-to-1-bit Look-Up Tables (LUTSs), tip-flops and some
additional logic [17].

Implementation results of the SIG-SHA-1 design on VirtexC2V2000-6
are presented in Table 1, where the throughput and throagigruslice (TPS)
values are calculated with the following equations [5]:

block sizex clock frequency

h h
throughput= clock cycles per block

(9)
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Table 1: Implementation results of SIG-SHA-1 on Virtex-ICZV2000-6
Slices 1,275
Equivalent gate count 25,467
Max. clock frequency 117.5 MHz
Latency of a SHA-1 round 698 ns

Throughput 734 Mbps
TPS 0.576 Mbps / slice
and throughput
Tps= —roudnput (10)
slices

where block size is 512 bits and clock cycles per block is 82.

Based on the values presented in Table 1 it is stated that Sebx be effi-
ciently implemented on FPGAs with minimal logic resourc&be performance
of SIG-SHA-1 is sufficient for most imaginable applicatiobsit if the through-
put falls short for certain applications, similar metholattwere used in [9] for
increasing the throughput of MD5 can be used also for SHAHatTs, parallel
SHA-1 blocks can be added so that several SHA-1 calculatande processed
simultaneously in parallel. Throughput can be also in@ddxy unrolling several
SHA-1 steps and then pipelining the design so that a diffeg#hA-1 calcula-
tion can be simultaneously processed in every pipelineestdgese approaches
increase the throughput of the design, but they do not deertbe delay of a sin-
gle SHA-1 calculation. If the delay of a single calculatiogeds to be reduces,
unrolling of several steps may be used.

5 Comparisons

In this section, the SIG-SHA-1 design presented in the pres/sections is com-
pared to other relevant implementations. First, SHA-1 am@bMre compared in
Section 5.1. The comparison is straightforward, becausgasiimplementation
techniques as well as target devices were used. Second$5I3Kst designs are
compared to other published FPGA-based implementatioSeation 5.2. First
of all, it must be stated that SIG-SHA-1 was not designed tthbdastest or most
compact SHA-1 implementation. It was implemented merelyaimpare SHA-1
and MD5 and to provide a rightful reference point for the gasif a compact and
combined MD5/SHA-1 architecture presented in [8].
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When the SIG-MD5-I design presented in [9] was synthesizéld 8ynplify 7.3.4
instead of Xilinx Synthesis Tool (XST) 6.2 used in the orgipaper, significant
enhancement in performance was attained. These new resuKginx Virtex-

Il XC2V2000-6 are the following: SIG-MD5-I requires 1235c#s, operates at
a clock frequency of 101.9 MHz, achieves a throughput of 793p#/ and one
algorithm round requires 647 ns to be completed. TPS valuglGfMD5-I is
0.640 Mbps / slice.

When the results of Table 1 are compared to the above MD5 sesuttan
be seen that almost similar amount of area is required framtdhget device.
Although SHA-1 generates a 160-bit hash valtleinstead of 128 bits created
with MD5, only small increase in required area is witnesssThimainly because
of the simpler structure of the SHA-1 step function compacelD5.

The simpler step function also results in a shorter crijpeh, thus allowing
higher maximum clock frequency. Although the clock frequers higher, the
performance figures, i.e. throughput and TPS, are smaliepaced to SIG-MD5-
I. The reason for this is that SHA-1 requires computationG$i&ps instead of 64
computed in MD5. Thus, a slower overall performance is adue

As a conclusion for the comparison of SIG-SHA-1 and SIG-MDibis stated
that both SHA-1 and MD5 can be implemented with almost sinhilgic require-
ments and there is no major difference in achieved perfocmahthe algorithms.
In addition, almost similar implementation techniques barused. Even some of
the VHDL code can be re-used in the design of the other algurit

SHA-1 and MD5 have a similar general structure and they simengy com-
mon resources. Therefore, a design combining both intoglescompact design
exploiting similarities of the algorithms very efficientlyas designed. It was con-
cluded that the algorithms can be combined in a very compatidn with only
small reduction in performance. Details of this design ared found in [8].

5.2 Comparison to Other Published FPGA-based | mplemen-
tations

In this section, SIG-SHA-1 is compared to other publishe@Afased SHA-1
implementations. Designs included into the comparisorttegdollowing: Diez
et al. [2], Dominikus [4], Kang et al. [10], Kitsos et al. [11$elimis et al. [14],
Sklavos et al. [15], and Zibin et al. [18]. A summary of thessigns in presented
in Table 2.

First, it must be mentioned that this comparison can be densd only as
suggestive, because of the variety of different targetabs/used in different im-
plementations. Thus, exact comparison of different imgetation techniques
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Table 2: Published FPGA-based SHA-1 Implementations

Design Device Slices Clock (MHz) Tput (Mbps)
SIG-SHA-1 Virtex-1l 2V2000-6 1275 117.5 734
Diez [2] Virtex-11 2v3000 1550 38.6 900
Dominikus [4]  Virtex-E V300E 1004? 42.9 119
Kang [10F Altera EP20K1000E-3 10573 (LE) 18 114
Kitsos [11] Virtex V300 2506 47 n.a.
Selimis [14] Virtex V150 518 82 518
Sklavos [15§  Virtex-1l 2V500 2245 55 1339
Zibin [18] Altera EP1K100-1 1662 (LE) 43.1 269

cannot be made fairly only based on the performance figuesepted in Table 2.
In general, area requirements do not change dramaticalynwahXilinx’ device
family is changed to another. However, severe enhancemgmrformance usu-
ally occurs when a newer device family or even only a fastgicgein the same
family is used.

Comparison of logic requirements between Xilinx slices antra’s logic
elements (LE) is not straightforward. Rough estimates cacalb®ilated by as-
suming that a slice equals two LEs. That is because a slitedes two LUTS,
two registers and certain additional logic [17], whereakR&rconsists of one LUT,
one register and additional logic [1].

The fastest published SHA-1 implementation is, to the atgHamowledge,
design by Sklavos et al. published in [15]. Surprisinglymplements, in addition
of SHA-1, also the RIPEMD hash algorithm [3]. Efficient unnagj of steps was
used in order to increase throughput.

The smallest published implementation is published bynSslet al. in [14],
and it required only 518 slices from the target device. Itasknown, whether it
requires additional memory in addition to the logic resegror not, but it most
likely does.

More exotic hash implementations include designs by Ddwmand Kang et
al. Dominikus presented a general hash processor whicheasdd for SHA-1,
SHA-256, MD5 and RIPEMD hash algorithms [4]. It requires oalyninimal
amount of area and has a competent performance, at leastreitier old device
family is taken into account. However, it is a general prgoesrchitecture, and
therefore it naturally falls short in performance if comg@ito algorithm specific
implementations.

Kang et al. designed a hash implementation for SHA-1, HAG-ditd MD5

1A hash processor. Also MD5, SHA-256 and RIPEMD included
2Also MD5 and HAS-160 included
3Includes also RIPEMD
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algorithms in [10]. HAS-160 is a hash algorithm developedbyea Telecommu-
nications Technology Association [10], and it is not widesed. The structure of
HAS-160 is similar to SHA-1 [10] and they were combined tbgetin the design,
but MD5 was included merely as a separate block. A more efficiembination
of the MD5 and SHA-1 algorithms is presented in [8].

In [2], Diez et al. presented designs of MD5 and SHA-1, of whinly the
SHA-1 design is considered in this report. It used two steplling for achieving
faster performance. Kitsos et al. presented in [11] a SHAydlementation which
was used in an implementation of the Digital Signature Aithon (DSA) [6], and
therefore the SHA-1 design is only a small part of the papéiitas not considered
in detail. Zibin and Ning presented an implementation of SH# [18]. The
implementation was performed in a traditional fashion, #relstructure of the
architecture is quite similar to the architectures presegit this report and in [11],
for example.

SIG-SHA-1 is among both fastest and smallest implememtatidhus, it is a
very competent implementation of SHA-1. However, as it dogiscontain any
novel methods to implement SHA-1, there is no need to pulilishany refereed
journal or conference. In addition, all the studies of inmpéatation techniques
performed in [9] for MD5 can be generalized also for SHA-1.

6 Conclusions

An efficient design of the widely used hash algorithm, SHAxBS presented.
The design was a straightforward and easy-to-understapkbinentation of the
SHA-1 specifications presented in [7]. The design is calte81&-SHA-1, where
SIG is an acronym for the Signal Processing Laboratory asikldl University of
Technology, where the design work was performed.

SIG-SHA-1 was compared to SIG-MD5-I, which is an impleméntaof the
other commonly used hash algorithm MD5, published in [9]wdis concluded
that almost similar amount of area is required from the tadgwice for both
designs. SIG-SHA-1 operates at a higher clock frequenay $i&-MD5-I, but
SIG-MD5-1 achieves higher throughput values, because @fsthuctures of the
algorithms. Anyhow, both of the implementations achiewe/vegh performance
with minimal logic requirements.

SIG-SHA-1 is among the fastest and most compact publishéalAHFPased
SHA-1 implementations. There are both faster and smallptamentations, but
SIG-SHA-1 offers a good balance between performance andregbarea.
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