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Abstract

This technical report presents an efficient implementation of the com-
monly used hash algorithm SHA-1. The SHA-1 algorithm is widely used
in various public-key cryptography algorithms, and therefore efficienthard-
ware implementation of SHA-1 is of great importance. A thorough pre-
sentation of the implementation techniques is presented. The design was
implemented on a Xilinx Virtex-II XC2V2000-6 FPGA device, and it re-
quired 1275 slices, operated at a clock frequency of 117.6 MHz achiev-
ing a throughput of 734 Mbps, respectively. The design is compared to a
published design of MD5 hash algorithm and their performance and logic
requirements are compared. The SHA-1 design is also compared to other
open-literature FPGA-based SHA-1 implementations, and it is concluded
that it is among the fastest and smallest SHA-1 FPGA implementations.

c© Kimmo Järvinen, 2004,kimmo.jarvinen�hut.fi
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1 Introduction

This report describes an efficient hardware implementationof the SHA-1 hash
algorithm [7] which is a commonly used algorithm in cryptography. The imple-
mentation was designed using similar methods that were usedin the implementa-
tion of the MD5 hash algorithm [12] which is to be published in[9]. The design is
called SIG-SHA-1, where SIG is an acronym for the Signal Processing Laboratory
at Helsinki University of Technology. SIG-SHA-1 is made in order to compare
hardware implementations of SHA-1 and MD5. The design was used also in the
evaluation of a combined MD5/SHA-1 module described in [8].SIG-SHA-1 is a
straightforward implementation of the SHA-1 specifications available in [7], and
it performs well in both required area and performance.

Field Programmable Gate Arrays (FPGAs) are almost ideal candidates for im-
plementation platforms of cryptographic algorithms, because they combine the
speed of hardware with the flexibility of software. Several benefits of crypto-
graphic algorithms on FPGAs are listed and analyzed in [16].

In the implementation described in this report, FPGA devices manufactured
by Xilinx are used. Xilinx Virtex-II XC2V2000-6 FPGA device is used as an
implementation platform for the presented design. Virtex-II device family offers
both fast performance and large logic resources [17].

Hash algorithms, also commonly called as message digest algorithms, are al-
gorithms generating a unique fixed-length bit vector for an arbitrary-length mes-
sageM . The bit vector is called the hash of the message and it is heredenoted as
H . The hash can be considered as a fingerprint of the message.

There are several essential features that a hash algorithm must have. First,H
must be easy to compute for every givenM . Second, it must be hard to compute
M whenH is given. Third, it must be hard to find another messageM ′ which has
the sameH asM . [13] Here, the term ’hard’ means computationally infeasible.

Secure Hash Algorithm (SHA) is described in the National Institute of Stan-
dards and Technology’s (NIST) Federal Information Processing Standard (FIPS)
180-2: Secure Hash Standard (SHS) [7]. SHS describes the following algorithms:
SHA-1 (SHA-160), SHA-256, SHA-385 and SHA-512, where the number is the
length of the hashH in bits. In this report, only SHA-1 (SHA-160) is consid-
ered. SHA-1 is widely used in various public-key cryptographic algorithms, e.g.
in Digital Signature Algorithm (DSA) [6].

This report is organized as follows: first, the SHA-1 algorithm is introduced
in Section 2. Design and implementation of the SHA-1 module is considered in
Section 3 and the results of the implementation are presented in Section 4. Short
comparisons to both MD5 and other published SHA-1 implementations is given
in Section 5. Finally, conclusions are made in Section 6.
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2 SHA-1 Algorithm

SHA-1 is a part of the FIPS 180-2: Secure Hash Standard [7]. Itis very widely
used in public-key cryptography, especially in message authentication schemes.

SHA-1 calculates a 160-bitH for a b-bit M . The algorithm consists of the
following steps:

1. Appending Padding Bits
Theb-bit M is padded in the following manner: a single 1-bit is added into
the end ofM , after which 0-bits are added until the length of the message
is congruent to 448, modulo 512.

2. Appending Length
A 64-bit representation ofb is appended to the result of the above step.
Thus, the resulted message is a multiple of 512 bits.

3. Buffer Initialization
Let H0, H1, H2, H3 andH4 be 32-bit hash value registers. These registers
are used in the derivation of a 160-bit hashH . At the beginning, they are
initialized as follows:

H0 = x′′67452301′′

H1 = x′′e f cdab89′′

H2 = x′′98badc f e′′

H3 = x′′10325476′′

H4 = x′′c3d2e1 f 0′′

(1)

4. Processing of the message (the algorithm)
The algorithm which is used for processing of the padded message is de-
scribed next. First, the padded message needs to be divided into 512-bit
blocks, denoted here asM j where j ≥ 0 is the index of the block. The al-
gorithm processes oneM j at once, starting fromM0, until all M j have been
processed.

Five 32-bit registers,A, B, C, D andE are defined. At the beginning of
processing of eachM j their values are set as follows:A←H0, B←H1, etc.

The algorithm consists of 80 steps. Lett denote the index of a step, i.e.
0≤ t ≤ 79. First, a 32-bit message blockWt is derived for every stept from
the 512-bit message blockM j using a message schedule. Fort < 16,Wt is
simply thetth 32-bit word ofM j . Whent ≥ 16,Wt are derived recursively
with the following formula:

Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14⊕Wt−16) ≪ 1 (2)
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where≪ denotes circular shift to the left bys bits and⊕ is a logical xor-
operation. LetKt be a constant value for stept. The values ofK are set as
follows:

Kt =















x′′5a827999′′ 0≤ t ≤ 19
x′′6ed9eba1′′ 20≤ t ≤ 39
x′′8 f 1bbcdc′′ 40≤ t ≤ 59
x′′ca62c1d6′′ 50≤ t ≤ 79

(3)

A functionF(X,Y,Z) depending on the stept is defined as follows

F(X,Y,Z) =















(X∧Y) ⊕ (¬X∧Z) 0≤ t ≤ 19
X ⊕Y ⊕ Z 20≤ t ≤ 39
(X∧Y) ⊕ (X∧Z) ⊕ (Y∧Z) 40≤ t ≤ 59
X ⊕Y ⊕ Z 60≤ t ≤ 79

(4)

where∧,⊕ and¬ are bitwise logical and, xor and complement, respectively.

The message is processed for 0≤ t ≤ 79 with the following function, which
is here called the SHA-1 step function:

T = (A ≪ 5)+F(B,C,D)+Wt +Kt +E (5)

where+ denotes an addition modulo 232. After each step, the values of the
registers are set as follows:

A ← T
B ← A
C ← B ≪ 30
D ←C
E ← D

(6)

Finally, when all 80 steps have been processed, the following operations are
performed:

H0 ← H0 +A
H1 ← H1 +B
H2 ← H2 +C
H3 ← H3 +D
H4 ← H4 +E

(7)

If all M j have been processed, the algorithm is terminated. Otherwise, the
algorithm is processed withM j+1.

5. Output
When all M j have been processed with the above algorithm, the 160-bit
hashH of M is available inH0, H1, H2, H3 andH4.
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Figure 1: A top-level block diagram of SIG-SHA-1

3 Implementation

The goal of the design of SIG-SHA-1 was to make an implementation compara-
ble to the SIG-MD5-I design presented in [9] so that the logicrequirements and
performance of MD5 and SHA-1 could be easily compared. The iterative struc-
ture was chosen in order to make a compact structure which could be used in the
evaluation of the combined MD5/SHA-1 block introduced in [8].

The top-level architecture used for SIG-SHA-1 implementation is almost sim-
ilar to the architecture used for SIG-MD5 implementations in [9]. A block dia-
gram of SIG-SHA-1 is presented in Figure 1. SIG-SHA-1 implements only the
steps 3–5 presented in Section 2, because padding ofM is fast to perform also
with software, and thus it does not require hardware acceleration.

The critical path of the implementation includes the step function block and
the multiplexer in front of it. Thus, an efficient implementation of the step func-
tion is essential for a high performance hardware implementation of SHA-1. The
calculation of the algorithm can be speeded up by unrolling several steps as per-
formed in [2], for example. However, it was decided that thisapproach was not
used in the SIG-SHA-1 implementation, because of the increase in area require-
ments and, especially, because of the reduced comparability to the combined ar-
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Figure 2: A block diagram of the step function

chitecture of [8] and SIG-MD5-I.
A block diagram of the step function block is presented in Figure 2 whereF

implements the functions of Equation (4) andi is the index of the function derived
from the stept. The logic requirements of the step function are the following:
four 32-bit adders, 5 32-bit registers andF requires four 32-bit bitwise logical
operations selected by a multiplexer. Cyclical left shifts by constant values 5 and
30 do not require any logic, as they are performed simply by reorganizing the bit
vector.

The constant block in Figure 1 contains the values of constant Kt . It may be
implemented using dedicated memory blocks of the FPGA device, e.g. Block-
RAMs in Xilinx’ devices. However, in SIG-SHA-1 it was implemented on slices
in order to guarantee straightforward comparison to SIG-MD5-I.

The message schedule block implements the SHA-1 message schedule de-
scribed in Section 2. A 512-bit message blockM j is loaded into the block withM_in, address andload signals. The width ofM_in can be chosen between 32
and 512 bits, and for the implementations presented in this report the width was
chosen to be 128 bits. The message schedule block includes a 16x32-bit shift
register and additional logic implementing Equation (2).

The five adders in Figure 1 are used for calculating the additions of Equa-
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tion (7). The counter is a 7-bit counter, which counts the value oft from 0 to 79.
The coder derives the indexi of the functions of Equation (4) fromt, i.e.

i =















0 if 0≤ t ≤ 19
1 if 20≤ t ≤ 39
2 if 40≤ t ≤ 59
3 if 60≤ t ≤ 79

(8)

The ready block determines when the calculation of the stepsis finished, i.e.
t = 79 = 10011112. The leftmost multiplexer in Figure 1 is used for initializ-
ing the hash value registers. The initial values are set whena derivation of a new
hash value is started withstart_new, i.e. whenM0 is processed. Ifj ≥ 1 in
M j , the values from previous algorithm round are used, and the derivation is be-
gan with the
ontinue signal. The other multiplexer is used for controlling the
iterative loop. For the first step,t = 0, the initial values or the values from the
previous algorithm round are taken (start_new or 
ontinue), otherwise values
from previous iteration step are used.

When theready signal is high, a processing ofM j is finished, andM j+1 can be
loaded into the design. If allM j have been processed, the hashH of the message
M is ready inhash.

The above architecture was written in VHDL and it required 580 lines of code.
Having the experience of implementing MD5, the design of SHA-1 was simple
and straightforward.

4 Results

The architecture presented in Section 3 was implemented on aXilinx Virtex-II
XC2V2000-6 FPGA device. The logic synthesis was performed with Synplify
7.3.4 and implementation, including translation, mapping, place & route and tim-
ing, was performed with Xilinx ISE 6.2. Aldec Active-HDL 6.2was used for
project management and simulations.

Virtex-II XC2V2000-6 includes logic resources of 10,752 slices. A Virtex-II
slice consists of two 4-to-1-bit Look-Up Tables (LUTs), twoflip-flops and some
additional logic [17].

Implementation results of the SIG-SHA-1 design on Virtex-II XC2V2000-6
are presented in Table 1, where the throughput and throughput per slice (TPS)
values are calculated with the following equations [5]:

throughput=
block size×clock frequency

clock cycles per block
(9)
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Table 1: Implementation results of SIG-SHA-1 on Virtex-II XC2V2000-6
Slices 1,275
Equivalent gate count 25,467
Max. clock frequency 117.5 MHz
Latency of a SHA-1 round 698 ns
Throughput 734 Mbps
TPS 0.576 Mbps / slice

and

TPS=
throughput

slices
. (10)

where block size is 512 bits and clock cycles per block is 82.
Based on the values presented in Table 1 it is stated that SHA-1can be effi-

ciently implemented on FPGAs with minimal logic resources.The performance
of SIG-SHA-1 is sufficient for most imaginable applications, but if the through-
put falls short for certain applications, similar methods that were used in [9] for
increasing the throughput of MD5 can be used also for SHA-1. That is, parallel
SHA-1 blocks can be added so that several SHA-1 calculationscan be processed
simultaneously in parallel. Throughput can be also increased by unrolling several
SHA-1 steps and then pipelining the design so that a different SHA-1 calcula-
tion can be simultaneously processed in every pipeline stage. These approaches
increase the throughput of the design, but they do not decrease the delay of a sin-
gle SHA-1 calculation. If the delay of a single calculation needs to be reduces,
unrolling of several steps may be used.

5 Comparisons

In this section, the SIG-SHA-1 design presented in the previous sections is com-
pared to other relevant implementations. First, SHA-1 and MD5 are compared in
Section 5.1. The comparison is straightforward, because similar implementation
techniques as well as target devices were used. Second, SIG-SHA-1 designs are
compared to other published FPGA-based implementations inSection 5.2. First
of all, it must be stated that SIG-SHA-1 was not designed to bethe fastest or most
compact SHA-1 implementation. It was implemented merely tocompare SHA-1
and MD5 and to provide a rightful reference point for the design of a compact and
combined MD5/SHA-1 architecture presented in [8].
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5.1 Comparison of SHA-1 and MD5

When the SIG-MD5-I design presented in [9] was synthesized with Synplify 7.3.4
instead of Xilinx Synthesis Tool (XST) 6.2 used in the original paper, significant
enhancement in performance was attained. These new resultson Xilinx Virtex-
II XC2V2000-6 are the following: SIG-MD5-I requires 1235 slices, operates at
a clock frequency of 101.9 MHz, achieves a throughput of 791 Mbps, and one
algorithm round requires 647 ns to be completed. TPS value ofSIG-MD5-I is
0.640 Mbps / slice.

When the results of Table 1 are compared to the above MD5 results, it can
be seen that almost similar amount of area is required from the target device.
Although SHA-1 generates a 160-bit hash valueH instead of 128 bits created
with MD5, only small increase in required area is witness. This is mainly because
of the simpler structure of the SHA-1 step function comparedto MD5.

The simpler step function also results in a shorter criticalpath, thus allowing
higher maximum clock frequency. Although the clock frequency is higher, the
performance figures, i.e. throughput and TPS, are smaller compared to SIG-MD5-
I. The reason for this is that SHA-1 requires computation of 80 steps instead of 64
computed in MD5. Thus, a slower overall performance is achieved.

As a conclusion for the comparison of SIG-SHA-1 and SIG-MD5-I, it is stated
that both SHA-1 and MD5 can be implemented with almost similar logic require-
ments and there is no major difference in achieved performance of the algorithms.
In addition, almost similar implementation techniques canbe used. Even some of
the VHDL code can be re-used in the design of the other algorithm.

SHA-1 and MD5 have a similar general structure and they sharemany com-
mon resources. Therefore, a design combining both into a single compact design
exploiting similarities of the algorithms very efficientlywas designed. It was con-
cluded that the algorithms can be combined in a very compact fashion with only
small reduction in performance. Details of this design are to be found in [8].

5.2 Comparison to Other Published FPGA-based Implemen-
tations

In this section, SIG-SHA-1 is compared to other published FPGA-based SHA-1
implementations. Designs included into the comparison arethe following: Diez
et al. [2], Dominikus [4], Kang et al. [10], Kitsos et al. [11], Selimis et al. [14],
Sklavos et al. [15], and Zibin et al. [18]. A summary of these designs in presented
in Table 2.

First, it must be mentioned that this comparison can be considered only as
suggestive, because of the variety of different target devices used in different im-
plementations. Thus, exact comparison of different implementation techniques
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Table 2: Published FPGA-based SHA-1 Implementations
Design Device Slices Clock (MHz) Tput (Mbps)
SIG-SHA-1 Virtex-II 2V2000-6 1275 117.5 734
Diez [2] Virtex-II 2V3000 1550 38.6 900
Dominikus [4]1 Virtex-E V300E 1004? 42.9 119
Kang [10]2 Altera EP20K1000E-3 10573 (LE) 18 114
Kitsos [11] Virtex V300 2506 47 n.a.
Selimis [14] Virtex V150 518 82 518
Sklavos [15]3 Virtex-II 2V500 2245 55 1339
Zibin [18] Altera EP1K100-1 1662 (LE) 43.1 269

cannot be made fairly only based on the performance figures presented in Table 2.
In general, area requirements do not change dramatically when a Xilinx’ device
family is changed to another. However, severe enhancement in performance usu-
ally occurs when a newer device family or even only a faster device in the same
family is used.

Comparison of logic requirements between Xilinx slices and Altera’s logic
elements (LE) is not straightforward. Rough estimates can becalculated by as-
suming that a slice equals two LEs. That is because a slice includes two LUTs,
two registers and certain additional logic [17], whereas anLE consists of one LUT,
one register and additional logic [1].

The fastest published SHA-1 implementation is, to the author’s knowledge,
design by Sklavos et al. published in [15]. Surprisingly, itimplements, in addition
of SHA-1, also the RIPEMD hash algorithm [3]. Efficient unrolling of steps was
used in order to increase throughput.

The smallest published implementation is published by Selimis et al. in [14],
and it required only 518 slices from the target device. It is not known, whether it
requires additional memory in addition to the logic resources or not, but it most
likely does.

More exotic hash implementations include designs by Dominikus and Kang et
al. Dominikus presented a general hash processor which can be used for SHA-1,
SHA-256, MD5 and RIPEMD hash algorithms [4]. It requires onlya minimal
amount of area and has a competent performance, at least if the rather old device
family is taken into account. However, it is a general processor architecture, and
therefore it naturally falls short in performance if compared to algorithm specific
implementations.

Kang et al. designed a hash implementation for SHA-1, HAS-160 and MD5

1A hash processor. Also MD5, SHA-256 and RIPEMD included
2Also MD5 and HAS-160 included
3Includes also RIPEMD
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algorithms in [10]. HAS-160 is a hash algorithm developed byKorea Telecommu-
nications Technology Association [10], and it is not widelyused. The structure of
HAS-160 is similar to SHA-1 [10] and they were combined together in the design,
but MD5 was included merely as a separate block. A more efficient combination
of the MD5 and SHA-1 algorithms is presented in [8].

In [2], Diez et al. presented designs of MD5 and SHA-1, of which only the
SHA-1 design is considered in this report. It used two step unrolling for achieving
faster performance. Kitsos et al. presented in [11] a SHA-1 implementation which
was used in an implementation of the Digital Signature Algorithm (DSA) [6], and
therefore the SHA-1 design is only a small part of the paper and it is not considered
in detail. Zibin and Ning presented an implementation of SHA-1 in [18]. The
implementation was performed in a traditional fashion, andthe structure of the
architecture is quite similar to the architectures presented in this report and in [11],
for example.

SIG-SHA-1 is among both fastest and smallest implementations. Thus, it is a
very competent implementation of SHA-1. However, as it doesnot contain any
novel methods to implement SHA-1, there is no need to publishit in any refereed
journal or conference. In addition, all the studies of implementation techniques
performed in [9] for MD5 can be generalized also for SHA-1.

6 Conclusions

An efficient design of the widely used hash algorithm, SHA-1,was presented.
The design was a straightforward and easy-to-understand implementation of the
SHA-1 specifications presented in [7]. The design is called as SIG-SHA-1, where
SIG is an acronym for the Signal Processing Laboratory at Helsinki University of
Technology, where the design work was performed.

SIG-SHA-1 was compared to SIG-MD5-I, which is an implementation of the
other commonly used hash algorithm MD5, published in [9]. Itwas concluded
that almost similar amount of area is required from the target device for both
designs. SIG-SHA-1 operates at a higher clock frequency than SIG-MD5-I, but
SIG-MD5-I achieves higher throughput values, because of the structures of the
algorithms. Anyhow, both of the implementations achieve very high performance
with minimal logic requirements.

SIG-SHA-1 is among the fastest and most compact published FPGA-based
SHA-1 implementations. There are both faster and smaller implementations, but
SIG-SHA-1 offers a good balance between performance and required area.
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