
Throughput Optimized SHA-1 Architecture Using Unfolding Transformation

Yong Ki Lee1, Herwin Chan1 and Ingrid Verbauwhede1,2

1 University of California, Los Angeles 2 Katholieke Universiteit Leuven
{jfirst, herwin, ingrid} @ ee.ucla.edu

Abstract

In this paper, we analyze the theoretical delay
bound of the SHA-1 algorithm and propose
architectures to achieve high throughput hardware
implementations which approach this bound.
According to the results of FPGA implementations,
3,541 Mbps with a pipeline and 893 Mbps without a
pipeline were achieved. Moreover, synthesis results
using 0.18μm CMOS technology showed that 10.4
Gbps with a pipeline and 3.1 Gbps without a pipeline
can be achieved. These results are much faster than
previously published results. The high throughputs are
due to the unfolding transformation, which reduces the
number of required cycles for one block hash. We
reduced the required number of cycles to 12 cycles for
a 512 bit block and showed that 12 cycles is the
optimal in our design.

1. Introduction

Hash functions are primitive components in many
cryptographic systems. The key features of hash
functions are the one way function property, collision
resistance and their high speed. Hash functions are
commonly used in Digital Signature Algorithm [9] and
message authentications. Considering that data sizes
and communication speeds are dramatically increasing
every year, low throughput of hash functions can be a
bottle neck in the digital and/or communications
systems.

In this paper, we analyze the delay bound of SHA-1
using the iteration bound [8], which defines the
minimum delay in which an algorithm may run
independent of implementation architectures. We
propose architectures which are close to the bound.
Our architectures achieve 3,541 Mbps with a four-step
pipeline and 893 Mbps without a pipeline in FPGA
implementations. The pipeline technique [3] is used to
increase throughput and improve hardware reuse. The
synthesis results using 0.18μm CMOS technology

show that 10.4 Gbps with a pipeline and 3.1 Gbps
without a pipeline can be achieved. We designed the
architectures to achieve high throughput using the
unfolding transformation, i.e. the reduction of the
required number of cycles for a 512 bit message block.
The highest throughput is achieved with the 12 cycle
version in both FPGA implementations and CMOS
synthesis. This optimum point is verified by
mathematical analysis. This paper also shows the
performances of design trade-off for how the
reductions in the number of cycles affect the
performance in SHA-1 implementations. Moreover,
this theoretical analysis method can be used to estimate
other hash algorithms.

The remainder of the paper is structured as follows.
In section 2, the background of SHA-1 is explained,
and related works are presented in section 3. The
theoretical delay bound of SHA-1 is analyzed in
section 4, and our design architectures and their
analyses are presented in section 5. The performance
results and a comparison with some conventional
implementations are given in section 6, and we
conclude in section 7.

2. SHA-1 Algorithm

Figure 1. SHA-1 gash operation architecture

SHA-1 [1], which is one of the most popular hash
algorithms, was issued by the National Institute of
Standards and Technology (NIST) in 1995. SHA-1
takes input data of length less than 264 bits and gives
output of 160 bit length. After packing and padding an
arbitrary length message into one or multiple 512 bit
blocks, each block is processed separately. Each block
message requires 4 rounds of hash operations, where
each round is composed of 20 hash operations. The
differences among the rounds are on a scrambling
constant, , and a nonlinear operation, , where t
represent the t -th hash operation. The architecture of
one step hash operation is illustrated in Figure 1 and
the mathematical expression is described in Figure 2.

tK tF

ttttttttt KWEDCBFASTEMP ++++=),,()(5 ;

tt DE =+1 ; ; ; tt CD =+1)(301 tt BSC =+

tt AB =+1 ; ; tt TEMPA =+1

Figure 2. Equation set for SHA-1 hash
operation

In Figure 1 and Figure 2, and represent 5

and 30 circular left shifts respectively and is a 32
bit register value. The number of registers can be
either 80 or 16. If 80 registers are to be used, the
values can be calculated before the hash operations,
and if 16 registers are to be used, the values are
dynamically updated during the hash operations. In
this paper, all the implementations and syntheses are
done using 16 registers.

5S 30S
tW

tW

tW

tW

3. Related Works

In [2] and [3], a four-step pipeline technique is used
for high throughputs and hardware reuse. Since a
scrambling constant and a nonlinear function are
changed each round, the operation blocks of each
round can be reused by a pipeline. In [3], a high
throughput architecture is proposed which requires 40
cycles for 80 hash operations. By reducing the required
number of cycles by half, better throughput is achieved
while lowering the energy consumption. In [2] and [3],
the architectures are implemented in FPGA, and in [4],
[5] and [6], the architectures are implemented in ASIC.

Even though there are many published papers for
high throughput SHA-1 implementations including the
above references, there has been no publication saying
about the delay bound of SHA-1 and how to achieve
the bound.

4. Iteration Bound of SHA-1

The maximum attainable speed of the SHA-1
algorithm is determined by calculating the iteration
bound [8]. The data-flow graph (DFG) representation
is depicted on Figure 3, where D represents a delay
node and the other nodes represent the individual
functions in a SHA-1 hash operation. Since the order
of the four adders in SHA-1 does not make a
difference on the mathematical calculation, there are a
few different ways to represent a SHA-1 DFG. Figure
3 is the DFG which has the smallest bound.

A loop is a path that begins and ends at the same
node. For example, is a loop,
where is the delay node named

)(5)(ADSAD →+→→
)(AD A . If is the

loop calculation time and is the number of delay
nodes in the l -th loop, the l -th loop bound is defined
as . The iteration bound is defined as follows.

lt

lw

ll wt /

⎭
⎬
⎫

⎩
⎨
⎧

=
∈∞

l

l

Ll w
tT max

where is the set of all the possible loops. L
Since)()()30(),5(+<<< DelayFDelaySDelaySDelay t ,

the loop which corresponds the gray nodes in Figure 3
is the one having the maximum loop bound. Therefore,
the iteration bound of SHA-1,

2
)()(tFDelayDelayT ++=∞ .

This means that a delay of one SHA-1 hash
operation can not be less than this bound.

5. Analysis of Unfolded SHA-1
Architectures

In order to approach the bound given in section 4,
we performed the unfolding transformation [8]. The
unfolding transformation combines the operations of
several iterations into a single cycle. By unfolding, the
hidden concurrencies can be parallelized. In this
section, we increase the unfolding factor in powers of
2, and show how the delay approaches the iteration
bound.

Figure 3. Data-flow graph of SHA-1

5.1. One hash operation per cycle

We start with an architecture without the unfolding
transformation. Since the additions dominate the delay
in SHA-1 hash operations, the number of additions in
the critical path must be minimized before other
functions are considered.

Among the four additions in a hash operation, only
one addition can be parallelized. Therefore, the critical
path has a delay of three additions as shown on Figure
4. The shaded nodes represent the critical path.

5.2. Two hash operations per cycle

 By unfolding two hash operations, i.e. with

unfolding factor two, four additions out of eight
additions can be parallelized. Therefore, the critical
path has a delay of four additions. Figure 5 shows the
architecture which has the minimum critical path delay
for two hash operations per cycle. Therefore, the
critical path is composed of four additions and one
circular shift. A similar approach of unfolding two
hash operations is done at [3].

Since the delay of circular shifts is negligible in
hardware implementations, we will count only
additions, +, and non-linear functions, , in the delay
analysis. Therefore, the normalized loop delay with
unfolding factor two, , is as follows.

tF

2̂T

)(2
2

)(4
2̂ +×=

+×
= DelayDelayT

where we divide by 2 to normalize by the unfolding
factor.

By unfolding by the unfolding factor 2, we have a
gain of one addition delay comparing with the
architecture of one hash operation per cycle. However,
it has still much larger delay than the iteration bound.

5.3. More than two operations per cycle

In order to approach the iteration bound, we
increase the unfolding factor. When , each
addition of 2 hash operations to a cycle, i.e. increasing
unfolding factor by two, causes a delay increase by

2>n

)()(2 tFDelayDelay ++× . This fact is explained in sub-
section 5.4. Note that we ignore the delay of the
circular shifts. Therefore, the normalized loop delay
with unfolding factor is as follows. n

n
FDelayDelayFDelayDelay

n
FDelayDelaynDelayT

tt

t
n

)()(2
2

)()(

}2/)()({)2()(4ˆ

−+×
+++=

++×−++×
=

where is a even number , and the last term is
obviously a positive value since .

n 2≥
)()(tFDelayDelay >+

So, if we have the limit of , n

2
)()(ˆlim t

nn

FDelayDelayT ++=
∞→

This means our architectures approach the iteration
bound, which is calculated using the DFG in section 4.

Figure 4. One hash operation per cycle

Figure 5. Two hash operations per cycle

Table 1. The total numbers of additions and non-linear functions in critical paths for a
block hash

n 1 2 4 5 8 10 16 20 40 80
addN 246 168 132 126 120 120 126 132 168 246

nonN 0 0 22 27 36 40 49 54 76 117

 However, cannot be arbitrarily increased. n
For the unfolding factor n , cycles are

required for 80 hash operations. We allocate two extra
cycles, one is for getting the input and initializing
registers and the other is for making and giving the
output. Therefore, the total required number of cycles
per block hash is , and the total delay with
unfolding factor , , is as follows.

n/80

2/80 +n

n *
n̂T

⎟
⎠

⎞
⎜
⎝

⎛ ×
−

++×+×⎟
⎠

⎞
⎜
⎝

⎛ +=

××⎟
⎠

⎞
⎜
⎝

⎛ +=

)(
2

2)()2(280

ˆ280ˆ*

t

nn

FDelaynDelayn
n

nT
n

T

Therefore, the total number of addition delays, ,
and the total number of non-linear function delays,

, in the critical path for one block hash can be
formulated as follows.

addN

nonN

841602)2(280
++=+×⎟

⎠

⎞
⎜
⎝

⎛ +=
n

nn
n

Nadd

3880
2

2280
+−=⎟

⎠
⎞

⎜
⎝
⎛ −

×⎟
⎠
⎞

⎜
⎝
⎛ +=

n
nn

n
Nnon

In order to distribute 80 operations equally over
each cycle, the possible values of are divisors of 80,
i.e. 1, 2, 4, 5, 8, 10, 16, 20, 40 and 80. The optimal
value of can be shown by calculating every possible
case. Table 1 shows the comparison of and
values for all the possible n . Assuming that

, 8 is the optimal point.

n

n
addN nonN

)()(+<< DelayFDelay t =n

5.4. Eight operations per cycle

In this sub-section, we show the architecture for the

unfolding factor eight, which achieves the highest
throughput. Using equations in Figure 2 iteratively,

, , , and can be expressed in
terms of , , , and . The expanded
equations are given in Figure 6. Having the values of

 and is straightforward since the
values only depend on the time indexes and the given
parameters. However, values must be used a
little bit carefully due to their dynamic changes during
2~4 round operations. Nevertheless, having the values
of is also straightforward.

8+tA 8+tB 8+tC 8+tD 8+tE

tA tB tC tD tE

7~ +tt KK 7~ +tt FF

7~ +tt WW

7~ +tt WW
In Figure 6, A and F represent an addition delay

and a non-linear function delay respectively, and the
values of right side of equations are the assignment
delays for each equation. The assignment delays can be
calculated as follows.

ADelayDelayDelay +=+)}(),(max{)(βαβα

FDelayDelayDelay
FDelay i

+
=

)}(),(),(max{
)),,((

γβα
γβα

The variables, α , β and γ , are either register values
or functions whose delays can be similarly calculated.
As shown in Figure 6, if in , a increase
in unfolding factor by two causes a delay increase by

2+≥ ti iTEMP

)()(2 tFDelayDelay ++× as stated in the sub-section 5.3.

 Assignment Delay

AWKEDCBFASTEMP
A

ttt

FA

tttttt 3][)],,()(5[
2

⇒++++=
+

44 344 214444 34444 21

ACBSAFWKDTEMPSTEMP
FA

ttttttt

A

tt 4)}]),(30,({}[{)(5
2

111

3

1 ⇒++++=
+

++++ 44444444 344444444 2143421

FABSASTEMPFWKCTEMPSTEMP
FA

ttttttt

A

tt +⇒++++=
+

+++++ 5))](30),(30,(}[{)(5
4

222

4

12 4444444444 34444444444 214434421

FAASTEMPSTEMPFWKBSTEMPSTEMP
FA

ttttttt

FA

tt +⇒++++=
+

++++

+

++ 6]))(30),(30,(})(30[{)(5
5

1333

5

23 444444444444 3444444444444 214434421

FATEMPSTEMPSTEMPFWKASTEMPSTEMP
FA

ttttttt

FA

tt 27))](30),(30,(})(30[{)(5
26

12444

6

34 +⇒++++=
+

+++++

+

++ 4444444444444 34444444444444 214434421

FATEMPSTEMPSTEMPFWKTEMPSTEMPSTEMP
FA

ttttttt

FA

tt 28))](30),(30,(})(30[{)(5
27

123555

27

45 +⇒++++=
+

++++++

+

++ 444444444444444 3444444444444444 214434421

FATEMPSTEMPSTEMPFWKTEMPSTEMPSTEMP
FA

ttttttt

FA

tt 39))](30),(30,(})(30[{)(5
38

2346661

28

56 +⇒++++=
+

+++++++

+

++ 444444444444444 3444444444444444 214434421

FATEMPSTEMPSTEMPFWKTEMPSTEMPSTEMP
FA

ttttttt

FA

tt 310))](30),(30,(})(30[{)(5
39

3457772

39

67 +⇒++++=
+

+++++++

+

++ 444444444444444 3444444444444444 214434421

)(30 38 ++ = tt TEMPSE , ,)(30 48 ++ = tt TEMPSD)(30 58 ++ = tt TEMPSC , 68 ++ = tt TEMPB , 78 ++ = tt TEMPA

 Figure 6. Equation Set for Delay Optimized Eight Operations per cycle

6. Implementations in FPGA and Synthesis
for ASIC

Our designs were implemented using GEZEL [7], a
design environment for exploration, simulation and
implementation of domain specific architecture.
GEZEL designs and their associated test-benches can
be automatically translated to synthesizable VHDL
codes. Using this environment, many different designs
can be quickly described, simulated and compared.

 We implemented the SHA-1 algorithm with
unfolding factors 1, 2, 4 and 8 to verify our
theoretical results. The results for the FPGA
implementation (Virtex2 XC2V1000) are given in
Table 2, and the synthesized results for an ASIC using
TSMC 0.18μm standard cell library are given Table 3.
The throughputs are calculated using the following
equation:

=n

)512(
#

bits
Cyclesof

FrequencyThrougput ×=

For the four-step pipeline, we used the 22 cycle
version since the 12 cycle version cannot be equally
divided in four parts. Note that only 10 cycles out of
12 cycles are devoted to the hash operations. Since
each round of the pipeline version requires 6 cycles (5
cycles for hash operations and one for either
initialization or finalization), the total number of cycles
of the pipeline version is 24 cycles.

As a result, in FPGA implementations, the 12 cycle
version achieved 893 Mbps and the pipeline version
achieved 3,541 Mbps. In CMOS synthesis, the 12
cycle version achieved 3.1 Gbps and the pipeline
version achieved 10.4 Gbps. We also measured the

energy consumptions of FPGA implementations.
According to the results, the pipeline version consumes
the least energy per 512 bit message block, and among
the non-pipeline versions, the 42 cycle version
consumes the least energy. Even though the 12 cycle
version achieved the most throughputs in both cases,
some other versions could be preferred due to the costs
of area and power.

The total delay of a SHA-1 calculation is the
product of the number of cycles and the one cycle
delay. It is compared with the total number of addition
delays, , in the Figure 7. Even though does
not account for the delays of non-linear functions, (the
delay of additions dominates the total delay) the results
show their linear dependency on each other. The

addN addN

Table 2. Results of FPGA Implementations for Critical Path Optimization
 Required cycles
for a 512 bit block 82 Cycles 42 Cycles 22 Cycles 12 Cycles 24 Cycle

(pipeline)
Area in slices

(including RAM) 1,446 1,575 1,742 2,394 4,258

Critical Path Delay 12.8 17.6 27.2 47.8 24.1
Frequency (MHz) 78.1 56.8 36.8 20.9 41.5

Throughput (Mbps) 488 693 856 893 3,541
Energy per block 1.16mJ 0.93mJ 0.96mJ 1.30mJ 0.81mJ

Table 3. Results of CMOS Synthesis for Critical Path Optimization
Required cycles

for a 512 bit block 82 Cycles 42 Cycles 22 Cycles 12 Cycles 24 Cycle
(pipeline)

Area in gates
(including RAM) 26,939 30,797 39,580 54,133 124,643

Critical Path Delay 3.99 5.32 8.56 13.75 8.19
Frequency (MHz) 250.6 187.9 116.8 72.7 122.1

Throughput (Mbps) 1,564 2,291 2,718 3,103 10,419

Figure 7. Comparison the total number of
critical path additions and total delay for one

block hash

results of the other unfolding factors can be easily
predicted due to this linearity. Therefore, we can
conclude is the optimum unfolding factor based
on both mathematical analysis and implementation
results.

8=n

All the programming is done at register transfer
level and we have mostly concentrated on optimizing
micro-architecture rather than focusing lower-level
optimization. We believe that more careful
implementations can achieve a better throughput
and/or a less area. Nevertheless, the throughputs are
the fastest results among ever published results. The
comparison with other implementations is described in
Table 4.

7. Conclusion

We analyzed the iteration bound of SHA-1 and
proposed throughput optimized SHA-1 architectures
which approaches the bound. The implementations in
FPGA achieved 893 Mbps without a pipeline and
3,541 Mbps with a pipeline, and syntheses using
0.18μm CMOS technology achieved 3.1 Gbps without
a pipeline and 10.4 Gbps with a pipeline. The high
throughputs were possible by the unfolding
transformation. Moreover, we showed that 12 cycle
versions are optimal in our design approach by
mathematical analysis.

Our analysis method and the architecture can be
applied to other hash algorithms. Moreover, since we
showed how the reductions of cycles affect the
performance, our results can be used to predict
performance changes for some other implementations
when our idea is applied.

8. Acknowledgement

This research has been supported by UC Micro and
NSF (Grant SRC-2003-HJ-1116).

Table 4. The comparison between our results and others
 [2] [3] [4] [5] [6] Our Proposal

Technology Xilinx FPGA
V100ecs144

Xilinx FPGA
V150bg352

0.25u
ASIC

0.18u
ASIC

0.13u
ASIC

Virtex 2 FPGA
XC2V1000 0.18u ASIC

Area 1,578
CLBS N/A 20,536

Gates
70,170
Gates(1)

9,859
Gates

2,394
Slices

4,258
Slices

54,133
Gates

124,643
Gates

Frequency
(MHz) 72 55 143 116 333.3 20.9 41.5 72.7 122.1

Cycles 84 40 82 80 85 12 24

9. References

[1] Secure Hash Standard, National Institute of Standards
and Technology, Federal Information Processing Standards
Publication 180-2, http://csrc.nist.gov/publications/fips/
fips180-2/fips180-2.pdf.
[2] N. Sklavos, E. Alexopoulos and O. Koufopavlou,
“Networking Data Integrity: High Speed Architectures and
Hardware Implementations,” The International Arab Journal
of Information Technology, Vol. 1, No, 0, July 2003.
[3] H. Michail, A.P. Kakarountas, O. Koufopavlou and C.E.
Goutis, “A Low-Power and High-Throughput
Implementation of the SHA-1 Hash Function,” IEEE
International Symposium on Circuits and Systems (ISCAS),
Kobe, Japan, 23-26 May, 2005.
[4] Y. Ming-yan, Z. Tong, W. Jin-xiang and Y. Yi-zheng,
“An Efficient ASIC Implementation of SHA-1 Engine for
TPM,” The 2004 IEEE Asia-Pacific Conference on Circuits
and Systems, December 6-9, 2004.
[5] G. T S and T S B Sudarshan, “ASIC Implementation of a
Unified Hardware Architecture for Non-Key Based
Cryptographic Hash Primitives,” Proceedings of the
International Conference on Information Technology:
Coding and Computing (ITCC’05), 2005.
[6] A. Satoh and T. Inoue, “ASIC-Hardware-Focused
Comparison for Hash Functions MD5, RIPEMD-160, and
SHS,” Proceedings of the International Conference on
Information Technology: Coding and Computing (ITCC’05),
2005
[7] Gezel development environment, http://rijndael.ece.vt.
edu/gezel2/index.php/Main_Page.
[8] K.K. Parhi, VLSI Digital Signal Processing Systems:
Design and Implementation, Weley, 1999,pp. 43~61 and
119~140.
[9] Digital Signature Standard, National Institute of
Standards and Technology, Federal Information Processing
Standards Publication 186-2, http://csrc.nist.gov/publications
/fips/fips186-2/fips186-2-change1.pdf

12 24
Pipeline 4 steps 4 steps None None None None 4 steps None 4 steps

Throughput
(Mbps) 1,700 2,816 893 824.9 2,006 893 3,541 3,103 10,419

(1) This is a unified solution for MD5, SHA1 and RIPEMD160, and this area includes RAM
* All our proposals include RAM areas.

http://csrc.nist.gov/publications/fips/%20fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/%20fips180-2/fips180-2.pdf
http://rijndael.ece.vt.%20edu/gezel2/index.php/Main_Page
http://rijndael.ece.vt.%20edu/gezel2/index.php/Main_Page
http://csrc.nist.gov/publications%20/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications%20/fips/fips186-2/fips186-2-change1.pdf

	1. Introduction
	2. SHA-1 Algorithm
	3. Related Works
	4. Iteration Bound of SHA-1
	5. Analysis of Unfolded SHA-1 Architectures
	5.1. One hash operation per cycle
	5.2. Two hash operations per cycle
	5.3. More than two operations per cycle
	5.4. Eight operations per cycle

	6. Implementations in FPGA and Synthesis for ASIC
	7. Conclusion
	8. Acknowledgement
	9. References

